はんだ付け実習

-基礎と補足-

1回目 2010/5/19(水) 5,6限 2回目 2010/5/26(水) 5.6限

電気電子工学科

RoHS(ローズ)

Restriction of Hazardous Substances (危険物質に関する制限) の頭文字から、RoHS又はRoHS指令と呼ばれる。

2006年7月1日以降にEU加盟国内において、電子・電気機器 (electrical and electronic equipment, **EEE**)への特定物質の基準値を超えて含有することを禁止する。

略記	日本名称	濃度 [ppm]
Pb	鉛	1,000
Hg	水銀	1,000
Cd	カドミウム	100
Cr ⁶⁺	六価クロム	1,000
PBB	ポリ臭化ビフェニル Poly-brominated biphenyl	1,000
PBDE	ポリ臭化ジフェニルエーテル Poly-brominated diphenyl ether	1,000

https://ja.wikipedia.org/wiki/RoHS

鉛フリーハンダの特徴

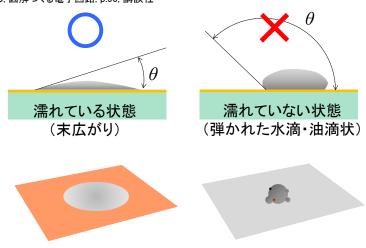
特徴	共晶はんだ (鉛入り)	鉛フリー はんだ
融点	約183℃	約217℃
鉛成分	約40%	0%
濡れ性 広がり性	優れている	粘土高く, 濡れ, 広がりが悪い
材料コスト	安い	高い
仕上がり状態	表面に光沢	光沢がなく, 綺 麗に見えない

鉛フリーが必要とされる理由

廃棄された電子機器の酸性雨暴露による鉛成分溶解

河川·土壤·海洋汚染

最後は・・・濃縮・人体汚染



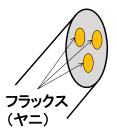
加藤ただし, 図解つくる電子回路, p.94, 講談社

野瀬昌治, はんだ付け職人のハンダ付け講座, p.31, 星雲社 より

ハンダの濡れ・流れ・広がりとは?

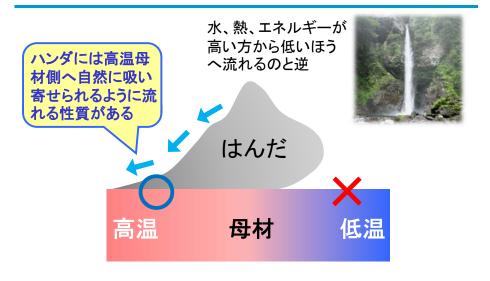
加藤ただし, 図解つくる電子回路, p.90, 講談社

野瀬昌治, はんだ付け職人のハンダ付け口座, p.8, 星雲社 より引用

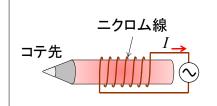

銅板母材上のはんだ

糸ハンダ(ヤニ入り糸ハンダ)

フラックスとは・・・ 松ヤ二等の植物性天然樹脂に薬品を加えたもの


フラックスの役割は・・・ ハンダより先に(約90°C)で溶けることで

- 1. 金属(母材)、溶けたハンダ表面の酸化物 や汚れを除去してきれいにする。
- 2. ハンダの表面張力(粘り気)を小さくしハンダの濡れ現象を促進する。
- 3. 溶融ハンダの表面を覆って再酸化を防ぐ。


アルミ母材上のはんだ

溶けたハンダは高温へ流れる

野瀬昌治,目で見て分かるはんだ付け作業,p.55,日刊工業新聞社 より

ハンダゴテの種類

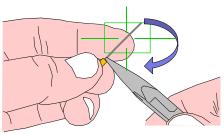
セラミックヒーターコテ先

ニクロム線をコテの芯にコイル 状に巻きつけて温める方法。 単純な構造だが熱がニクロム 線の外にも逃げるので効率は 良くない。 温度調節機能に優れるセラミックヒーターをコテの芯の内部に納める方法。内部から温めるので効率は良い。

http://www.matsusada.co.jp/column/image/benri02.pdf 野瀬昌治, はんだ付け職人のハンダ付け講座, p.10, 星雲社 より引用

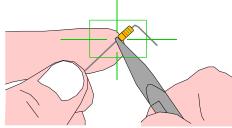
野瀬昌治, はんだ付け職人のハンダ付け講座, p.16, 星雲社 より

8

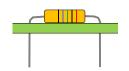

カーボン抵抗器を曲げる1

左手の人差し指を使って、抵抗器右側のリード線を直角付近まで曲げる。そして、左手を離す。この間、右手は静止したまま。

ラジオペンチ の溝をリードに 合わせる



左手の親指と中指を使って抵抗器の本体を軽くつまみ、人差し指でラジオペンチが挟んでいるリード線の根元に力を加える。このとき、人差し指で加える力の向きは自分の顔の方向。


加藤ただし、図解つくる電子回路、p.70、講談社 より

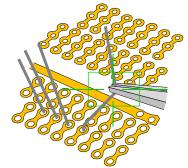
カーボン抵抗器を曲げる2

りも確

指だけで折り曲げるよりも確実に綺麗に実装できる。ラジオペンチの溝を下の太い方にすれば間隔も調整できる。

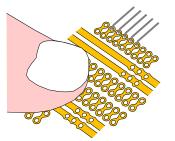
が働き、特性劣化に繋がる。

リード線を直接ラジオペンチで

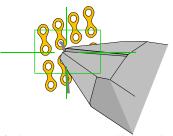

曲げるのはNG。電子部品本体

との接続部分に強い引っ張り力

加藤ただし、図解つくる電子回路、p.72、講談社 より引用


カーボン抵抗器を取り付ける

ピンセットを使う場合



親指と中指で部品を挟ん で強く押しながら、後の作 業性を考慮して、互いに 離れる方向へ曲げる。 ピンセットで挟む位置は突き出ているリード線の根元から離れたところ (全体の長さの半分程度)。そして リード線をつまんでいるピンセットを 基板に接触するまで水平に引っ張る。

カーボン抵抗器を取り付ける

L字部分を親指で押し広げ、すべての リード線を切り終わ るまで親指は動か さない。

左手の親指でリード線を基板に押し付け、残りの指で抵抗器本体と基板を支える。右手はリード線を切断することだけに専念する。ニッパーの先端がランドの端と一致する位置でリード線を挟む。 刃の先端が基板表面に当たっていることを確認してから切断する。

加藤ただし、図解つくる電子回路、p.122、講談社より引用

.-

加藤, 図解つくる電子回路, p.110, 講談社 より引用

コテ先の当て方と加熱時間

接触面積

接触面積 (中)

接触面積(大)

短時間で素早くはんだ付けするには、コテ先と加熱部(ランドとリード線両方)との接触面積が大きくなるように意識する

加藤ただし, 図解つくる電子回路, p.116, 講談社 より引用

コテ先の当て方と加熱時間

細いコテ先はリードとパターン 面に点接触するため、接触面 積が少なくコテ熱を効果的に は伝えられない

太いコテ先や断面カットされたコ テ先はリードとパターン面に面 接触するため、接触面積が増え てコテ熱を効果的に伝えられる

http://www.noseseiki.com/kisokouza/10.html 野瀬昌治, はんだ付け職人のハンダ付け講座, p.24, 星雲社 より引用

ハンダ付けの基本動作4段階

1:半田コテ先を母材に当てて温める(右手)

2:母材の温度が上がるのを見計らって半田を供給する(左手)

3: 半田の供給を止める(左手)

4: 半田がなじむのを確認してコテ先を離脱する(右手)

http://www.noseseiki.com/kisokouza/11.html 野瀬昌治, はんだ付け職人のハンダ付け講座, p.24, 星雲社 より引用

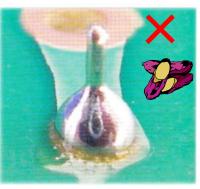
ハンダ付けの基本動作

(1) ランドの加熱

加熱時間の目安は2-3秒。両面スルーホール基板は銅箔面積が広いため多少長めの過熱をしても、すぐにはがれることはない。

3 加熱中に糸はんだを離す

② はんだを溶かす


はんだごてにはんだを盛るのではなく、 加熱した銅箔にはんだが流れ込むのを 待つ。

4 コテをランドから離す

加藤, 図解つくる電子回路, pp.104-106, 講談社 より

良いハンダと悪いハンダ

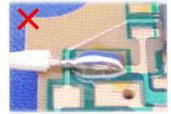
富士山のような裾広がりの形状をフィレットと呼ぶ

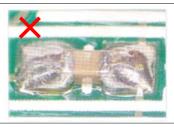
熱不足で玉になった形状をイモはんだと呼ぶ

野瀬昌治, はんだ付け職人のハンダ付け講座, p.18, 星雲社 より引用

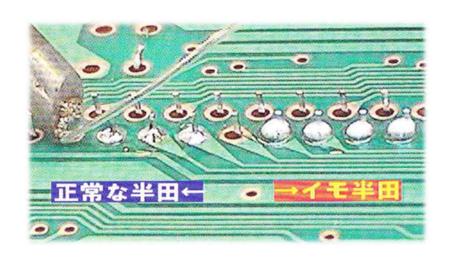
19

適切なハンダ量


リードより線形状が分かる


チップ部品形状が分かる

リードより線形状が見えない



チップ部品形状が不明

野瀬, はんだ付け職人のハンダ付け講座, p.19, 星雲社 より引用

イモはんだ(悪いハンダ)

野瀬昌治, はんだ付け職人のハンダ付け講座, p.37, 星雲社 より引用

よく見かけるNG例

17 17 05

硬いものでコテ先に 衝撃を与えない。

コテ先が汚れたまま 作業し続けると、汚 れそのものがランド の上に定着すること になり、回路の性能 低下に繋がる。

1ポイントはんだ付 けするたびにコテ先 の掃除を行う。

Tipリフレッサーは活性剤の働きで黒くなったこて先の酸化物を除去し、スズ粉末でこて先を再コーティングし、はんだの「のり」を復活させる。

加藤ただし, 図解つくる電子回路, p.98, 102, 講談社 より

20